Year 5 Mastery Overview Term by Term

Overview

One of the most frequent request we get as a Maths Hub is for a suggested long term curriculum plan for mathematics in primary. We have listened to what teachers need and the following mastery overviews have been developed by primary practioners in conjunction with the White Rose Maths Hub to provide a curriculum plan that will support 'Teaching for Mastery'.

There is a termly plan for each year group from Year 1 to Year 6; each term is split into twelve weeks. You will see from the overviews that a significant amount of time is devoted to developing key number concepts each year. This is to build their fluency as number sense will affect their success in other areas of mathematics. Students who are successful with number are much more confident mathematicians.

We hope you find them useful. If you have any comments about this document or have any ideas please do get in touch.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide a free assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice **Part 2:** Reasoning based questions

You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

9 Here is a rectanc

ork out the perimeter of the rectangle

The assessments have been designed with new KS2 SATS in mind. All of the assessments will be ready by 30 November 2015.

Year 5

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews;

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete – Pictorial – Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete – students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial – students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

An example of a bar modelling diagram used to solve problems.

Abstract – with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 5

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they don't appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Detailed Schemes

To complement these yearly overviews we are working on termly schemes of learning that provide:

- More details on how to teach particular aspects of the curriculum
- Fluency, reasoning and problem solving ideas for each topic.

These will gradually become available over this term. Please keep checking back for updates.

In addition to this the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'. They have been written by experts in mathematics.

It will also give you a detailed idea of what it means to take a mastery approach across your school. Information can be found on the link below.

https://www.ncetm.org.uk/resources/46689

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We don't believe that there are individuals who can do maths and those that can't. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with the other Maths Hubs across the country.

Year 5

Year 5 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	
Autumn	Number – Place Value Number – Additi Subtractio					on and Number – Multiplication and า Division					Statistics		
Spring	Number - Fractions					Number - Decimals			Number - Percentages				
Summer	Geometry- Geom Angles Sha		netry- ipes	Geometry- Position and Direction	Measur Converti	ement- ng Units	Number- Prime Numbers	Perimeter and Area	Measures Volume				

Term by Term Objectives

I Gal J	Year	5
---------	------	---

Year group 5 Term

Autumn

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	
Number – plan Read, write, o to at least 100 value of each	<u>ce value</u> rder and comp 00000 and dete digit.	are numbers rmine the	Number- addi Add and subtr increasingly la	tion and subtra ract numbers m arge numbers. ract whole num	action nentally with	Number – multiplication and division Multiply and divide numbers mentally drawing upon known facts.				Statistics Solve comparison, sum and difference problems using information presented in a line graph		
Count forward powers of 10 1000000.	ds or backward for any given n	s in steps of umber up to	written metho subtraction)	ligits, including ods (columnar a	using formal addition and	Multiply and Multiply num number using multiplication	bers up to 4 dig a formal writte for 2 digit num	Complete, read and interpret information in tables including				
Interpret nega count forward positive and n including thro	ative numbers i Is and backwar Iegative whole ugh zero.	n context, ds with numbers	Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.			Divide numbers up to 4 digits by a one digit number using the formal written method of short division and interpret remainders appropriately for the context.				timetables.		
Round any nu nearest 10, 10	mber up to 100 00, 1000, 10000	00000 to the) and 100000	problems in cooperations an	d methods to u	g which use and why.	Identify multi pairs of a num	ples and factor ber, and comn	s, including find non factors of t	ding all factor wo numbers.			
problems that	involve all of t	he above.				and the notat	ion for square nu	l (²) and cubed	(³)			
Read Roman r recognise yea numerals.	numerals to 10 rs written in Rc	00 (M) and oman				Solve problem including usin squares and c	ns involving mu g their knowled ubes.	Itiplication and dge of factors a	division nd multiples,			
						Solve problem multiplication including und	ns involving add and division ar erstanding the	dition and subt nd a combination use of the equa	raction, on of these, als sign.			

Term by Term Objectives

Year group	5	Term	Spring
------------	---	------	--------

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Number: Frac Compare and same numbe Identify, nam represented v Recognise mi form to the o number [for o Add and subt denominator Multiply prop supported by Read and wri Solve probler by simple frac	ctions l order fractions r. e and write equivisually includin xed numbers ar ther and write r example $\frac{2}{5} + \frac{4}{5} =$ cract fractions we s that are multi per fractions and materials and of te decimal num ns involving mu	whose denomiation ivalent fraction g tenths and he nd improper fra- mathematical s $\frac{6}{5} = 1\frac{1}{5}$] with the same de- ples of the same d mixed number diagrams. bers as fraction ltiplication and lems involving	inators are mul ns of a given fra undredths. actions and conv tatements >1 a enominator and e number. ers by whole nur ns [for example division, includ simple rates.	tiples of the ction, vert from one s a mixed d mbers, $e 0.71 = \frac{71}{100}$] ling scaling	Number: Deci Read, write, c with up to thr Recognise and them to tenth equivalents. Round decima to the neares decimal place Solve problem three decimal Multiply and o those involvin 1000. Use all four op involving mea mass, volume notation, inclu	imals order and comp ree decimal place d use thousand is, hundredths a als with two dec t whole numbe hs involving nur places. divide whole nu g decimals by 2 operations to sol sure [for exam , money] using uding scaling.	hare numbers ces. ths and relate and decimal cimal places r and to one mber up to umbers and 10, 100 and lve problems aple, length, decimal	Number: Pere Recognise the understand the 'number of percentages denominator Solve probler percentage a $\frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and the denominator	centages e per cent symb hat per cent rel arts per hundre as a fraction wi 100, and as a c ns which requir nd decimal equ hose fractions of a multiple o	pol (%) and ates to ed', and write th lecimal. re knowing livalents of $\frac{1}{2}$, with a f 10 or 25.	Time at the beginning or end of the term for consolidatio n, gap filling, seasonal activities, assessments , etc.

Term by Term Objectives

Year 5

5

Term

Summer

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Geometry- Ar Know angles a in degrees: es compare acut reflex angles. Draw given an measure ther (°) Identify: angle and one whol 360°), angles a straight line (total 180°) or of 90°	ngles are measured atimate and te, obtuse and ngles, and n in degrees es at a point e turn (total at a point on and ½ a turn ther multiples	Geometry- Sh Identify 3D sh including cub cuboids, from representation Use the proper rectangles to related facts a missing length Distinguish be regular and in polygons base reasoning abo sides and ang	hapes hapes, es and other a 2D ons. erties of deduce and find hs and angles. etween regular ed on but equal des.	Geometry- position and direction Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	Measurement units Convert betw units of metri (for example, cm and m; cm and kg; I and m Understand a approximate between met common imposuch as inches pints. Solve problem converting be of time.	t- converting een different c measure km and m; n and mm; g ml) nd use equivalences ric units and erial units s, pounds and ns involving etween units	Number- Prime Numbers Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers. Establish whether a number up to 100 is prime and recall prime numbers up to 19	Perimeter and Area Measure and calculate the perimeter of composite rectilinear shapes in cm and m. Calculate and compare the area of rectangles (including squares), and including using standard units, cm ² ,m ² estimate the area of irregular shapes.	Measures Volume Estimate volume [for example using 1cm ³ blocks to build cuboids (including cubes)] and capacity [for example, using water] Use all four operations to solve problems involving measure	Time at the b end of the ter consolidation gap filling, sea activities, asso	eginning or rm for , asonal essments, etc.

