Year 6 Mastery Overview Term by Term

Overview

One of the most frequent request we get as a Maths Hub is for a suggested long term curriculum plan for mathematics in primary. We have listened to what teachers need and the following mastery overviews have been developed by primary practioners in conjunction with the White Rose Maths Hub to provide a curriculum plan that will support 'Teaching for Mastery'.

There is a termly plan for each year group from Year 1 to Year 6; each term is split into twelve weeks. You will see from the overviews that a significant amount of time is devoted to developing key number concepts each year. This is to build their fluency as number sense will affect their success in other areas of mathematics. Students who are successful with number are much more confident mathematicians.

We hope you find them useful. If you have any comments about this document or have any ideas please do get in touch.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide a free assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice **Part 2:** Reasoning based questions

You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

9 Here is a rectan

rik out the perimeter of the rectar a units with your answer

The assessments have been designed with new KS2 SATS in mind. All of the assessments will be ready by 30 November 2015.

Year 6

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews;

- have number at their heart. A large proportion of time is spent reinforcing number to build competency
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete – Pictorial – Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete – students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial – students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

An example of a bar modelling diagram used to solve problems.

Abstract – with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 6

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they don't appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Detailed Schemes

To complement these yearly overviews we are working on termly schemes of learning that provide:

- More details on how to teach particular aspects of the curriculum
- Fluency, reasoning and problem solving ideas for each topic.

These will gradually become available over this term. Please keep checking back for updates.

In addition to this the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'. They have been written by experts in mathematics.

It will also give you a detailed idea of what it means to take a mastery approach across your school. Information can be found on the link below.

https://www.ncetm.org.uk/resources/46689

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We don't believe that there are individuals who can do maths and those that can't. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with the other Maths Hubs across the country.

Year 6

Year 6 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12		
Autumn	Number- Place Value		Numb Mult	Number- addition, Subtraction, Multiplication and Division				Fractions						
Spring	Number- Decimals		Number- Percentages	Measurement			Number- Algebra Number- Ratio							
Summer	Geon Proper Sha	netry- ties of pes	Geometry- Position and Direction	Post SATs Project Work										

Term by Term Objectives

Year	aroup	
	3	

6

Term

Autumn

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Week 1 <u>Number: Plac</u> Read, write, or compare num 000 000 and or value of each Round any wh to a required accuracy. Use negative context, and or intervals acro Solve number problems that the above.	week 2 <u>e Value</u> order and abers up to 10 determine the digit. nole number degree of numbers in calculate ss zero. T and practical t involve all of	Week 3 <u>Number- addit</u> Solve addition contexts, decid and why. Multiply multi number using multiplication. Divide number using the form interpret remainders fractions or by Divide number formal written remainders ac Perform ment operations and Identify comm numbers. Use their know calculations in Solve problem multiplication	tion subtraction and subtraction ding which oper -digit number up the formal writt rs up to 4 digits nal written meth ainders as whole r rounding as ap rs up to 4 digits n method of sho cording to conte al calculations, i d large numbers non factors, com wledge of the or volving the four as involving addi and division.	week 5 <u>multiplication</u> multi step prol rations and meth p to 4 digits by a ten method of lo by a 2 digit who nod of long divisi e number remain propriate for th by a 2 digit num rt division, inter ext. including with m s. mon multiples a rder of operation r operations. ition, subtraction ers to calculatio	Week 6 + division blems in hods to use a 2 digit ong ble number ion, and nders, te context. hber using the rpreting hixed and prime ns to carry out n, ons and	Week 7FractionsUse commonin the same definitionCompare andGenerate andAdd and subtreatingAdd and subtreatingthe concept ofMultiply simpleexample $\frac{1}{4} \times \frac{1}{2}$ Divide properAssociate a fragmenteexample, 0.37Recall and useincluding in di	factors to simple enomination. order fractions describe linear ract fractions w f equivalent fra le pairs of prop $=\frac{1}{8}$] fractions by wh action with divis [25] for a simple e equivalences h ifferent context	Week 9 lify fractions; u , including frac number sequ ith different de actions. er fractions, w hole numbers sion and calcu fraction [for eacher between simples.	week 10 use common mu ctions > 1 ences (with frac enominations a writing the answe [for example $\frac{1}{3}$: late decimal fra xample $\frac{3}{8}$] le fractions, dec	week 11 ultiples to expre- ctions) nd mixed numb er in its simples $-2 = \frac{1}{6}$] ction equivalen imals and perce	veek 12 ess fractions ers, using t form [for entages,
		determine in t	he context of a	problem, an app	propriate						

Term by Term Objectives

Year group	6	Term	Spring
------------	---	------	--------

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Number: Deci Identify the va digit in number three decimal multiply num 100 and 1000 answers up to Multiply one of with up to 2d numbers. Use written d methods in ca the answer had decimal place Solve problem require answer rounded to sp degrees of ac	imals ralue of each ers given to I places and bers by 10, 0 giving to 3dp. digit numbers p by whole livision ases where as up to two es. ms which ers to be pecified ccuracy.	Number: Percentages Solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison Recall and use equivalence s between simple FDP including in different contexts.	Measurement Solve problem and conversio decimal notati places where a Use, read, wri standard units of length, mas smaller unit of and vice versa up to 3dp. Convert betwo Recognise tha areas can have vice versa. Recognise whe formulae for a Calculate the a triangles. Calculate, esti of cubes and o including cm ³ , kr	te and convert s, converting mass, volume and l f measure to a n, using decima een miles and l t shapes with t e different peri area and volum area of parallel mate and com cuboids using s m ³ and extent m ³)	e calculation leasure, using e decimal t between leasurements time from a larger unit, i notation to kilometres. the same imeters and e to use le of shapes. lograms and pare volume tandard units, ding to other	Number: Alge Use simple for Generate and linear numbe Express missi problems alge Find pairs of r satisfy an equ two unknowr Enumerate pe combinations variables.	ebra prmulae d describe r sequences. ng number ebraically. numbers that uation with ns. ossibilities of s of two	Number: rati Solve probler the relative s quantities wh values can be using integer and division f Solve probler scale factor is can be found Solve probler unequal shar grouping usir of fractions a	o ms involving izes of two here missing found by multiplication facts. ms involving is where the known or ms involving ing and ng knowledge nd multiples.	Geometry and Statistics Illustrate and name parts of circles, including radius, diameter and circumferenc e and know that the diameter is twice the radius. Interpret and construct pie charts and line graphs and use these to solve problems. Calculate the mean as an average.	Time at the beginning or end of the term for consolidatio n ,gap filling, seasonal activities, assessments , etc.

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

Term by Term Objectives

|--|

Year group 6 Term Summer

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Geometry- Properties of		Geometry-		SATS wc		•				Time at the b	eginning or
<u>Shapes</u>		Position and		9 May						end of the ter	m for
Draw 2D shap	oes using	<u>Direction</u>		2010						consolidation	,
given dimens	ions and	Describe		2016						gap filling, sea	asonal
angles.		positions on								activities, asso	essments, etc.
		the full									
Compare and	classify	coordinate									
geometric sha	apes based on	grid (all four									
their properti	es and sizes	quadrants).									
and find unkn	nown angles										
in any triangle	es,	Draw and									
quadrilaterals	s and regular	translate									
polygons.		simple									
- ·		shapes on									
Recognise and	gles where	the									
they meet at	a point, are	coordinate									
on a straight i	line, or are	plane, and									
vertically opp	osite, and	reflect them									
nna missing a	ingles.	In the axes.									

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

